quinta-feira, novembro 21, 2024
25.8 C
Belo Horizonte

Inteligência artificial rastreia notícias sobre a pandemia

Ferramenta para mineração de dados e textos está sendo utilizada para gerar informações sobre a expansão da pandemia. ilustração: Pixabay
Ferramenta para mineração de dados e textos está sendo utilizada para gerar informações sobre a expansão da pandemia. ilustração: Pixabay

José Tadeu Arantes
Agência FAPESP

Uma ferramenta desenvolvida para mineração de dados e textos, chamada Websensors, está sendo utilizada na análise da evolução da pandemia de COVID-19. Capaz de extrair dados de textos de notícias, obtendo informações sobre “o que aconteceu”, “quando aconteceu” e “onde aconteceu, a Websensors possibilita ajustar, dia a dia, os modelos de propagação da doença.

A ferramenta foi desenvolvida no Instituto de Ciências Matemáticas e de Computação da Universidade de São Paulo (ICMC-USP), em São Carlos, pelos pesquisadores Solange Rezende, Ricardo Marcacini e Rafael Rossi, e teve também a participação de Roberta Sinoara. Recebeu apoios da FAPESP por meio do projeto “Aprendizado de máquina para WebSensors: algoritmos e aplicações”, e de bolsas concedidas a Marcacini, Rossi e Sinoara  – todos eles orientados na ocasião por Rezende.

A instância da ferramenta Websensors dedicada à epidemia de COVID-19 está disponível em http://websensors.net.br/projects/covid19/, com a interface web desenvolvida por Luan Martins, mestrando no ICMC-USP.

“Nós usamos mineração de dados em textos de notícias como forma de identificar eventos que estão ocorrendo em cada país e, assim, ajustar a projeção com as características do Brasil”, diz Rezende à Agência FAPESP.

Segundo a pesquisadora, a principal questão investigada na pesquisa da Websensors é a possibilidade de extrair informações complementares sobre um problema a partir de notícias e, com base nelas, ajustar os modelos preditivos já existentes.

“A ferramenta utiliza uma metodologia de mineração de eventos estruturada em cinco etapas: identificação do problema; pré-processamento; extração de padrões; pós-processamento; e uso do conhecimento”, conta Ricardo Marcacini.

A primeira etapa, a da identificação do problema, consiste em definir o escopo da aplicação e as fontes de dados. “Os dados diários de propagação internacional da COVID-19 são coletados no Data Repository by Johns Hopkins CSSE. E as notícias, publicadas em mais de 100 idiomas, são obtidas por meio do GDELT Project. Essa grande plataforma, altamente seletiva, nos protege contra fake news”, diz Rezende.

Na segunda etapa, a do pré-processamento, são utilizados algoritmos que transformam as notícias em eventos. “Queremos apenas notícias em que possamos identificar o que aconteceu, quando aconteceu e onde aconteceu (georreferenciado). Quando pelo menos essas três informações podem ser extraídas da notícia, então temos um evento, que um programa de computador possa analisar”, explica Marcacini.

Na terceira etapa, a da extração de padrões, é empregada uma rede neural que recebe, como entrada, as curvas de contágio de alguns países. E as enriquece, adicionando os eventos pré-processados na etapa anterior. “Como saída, nós configuramos a rede neural para que ela retorne à curva de contágio, considerando as características do Brasil”, relata Marcacini.

No pós-processamento, que configura a quarta etapa, os responsáveis pela ferramenta fazem uma avaliação do modelo utilizado. “Diferentes técnicas de avaliação podem ser empregadas”, diz Rezende. “Uma delas é usar o modelo para prever alguns dos dados que já conhecemos e, assim, quantificar a margem de acertos.”

A quinta e última etapa, finalmente, diz respeito ao uso do conhecimento. Isso significa disponibilizá-lo para ser explorado por usuários ou mesmo por outros sistemas. No caso, todo o conhecimento obtido acerca da pandemia pode ser acessado abertamente no endereço http://websensors.net.br/projects/covid19/.

Rezende afirma que a plataforma Websensors tem publicado diariamente as previsões dos próximos sete dias da curva de contágio do Brasil, usando o modelo ajustado com os eventos. As informações encontram-se disponíveis para qualquer interessado. Mas alerta para o fato de que a ferramenta ainda está recebendo ajustes. “É importante ressaltar que a Websensors não foi construída para essa finalidade. No entanto, acreditamos que, nesse período difícil, podemos utilizar o que temos à disposição para colaborar”, afirma.


Este texto foi originalmente publicado por Agência FAPESP de acordo com a licença Creative Commons CC-BY-NC-ND. Leia o original aqui.

Edições anteriores

Um dia no futuro: a neurotecnologia cria boas notícias

Arnoldo, nascido em 2010, com uma doença neurológica debilitante,...

Centros de Pesquisa em Inteligência Artificial pretendem impulsionar aplicações da tecnologia no país

Localizadas em diferentes regiões do Brasil, unidades serão voltadas...

Quatro mitos sobre o futuro da agricultura urbana

Futuro da Alimentação: Quatro Mitos Sobre a Agricultura Vertical...

Futuro da odontologia: nova abordagem torna os enxertos ósseos melhores

Pesquisadores estão tendo sucesso em seus esforços para construir...

Eventos extremos: entidades criam sistema de monitoramento

Plataforma da Fiocruz e do Observatório do Clima mapeia...
Verified by MonsterInsights